Minimum error classification training of HMMs-Implementation details and experimental results.
نویسندگان
چکیده
منابع مشابه
Minimum classification error (MCE) model adaptation of continuous density HMMS
In this paper, a framework of minimum classification error (MCE) model adaptation for continuous density HMMs is proposed based on the approach of "super" string model. We show that the error rate minimization in the proposed approach can be formulated into maximizing a special ratio of two positive functions, and from that a general growth transform algorithm is derived for MCE based model ada...
متن کاملSpeaker identification using minimum classification error training
In this paper we use a Minimum Classification Error (MCE) training paradigm to build a speaker identification system. The training is optimized at the string level for a text-dependent speaker identification task. Experiments performed on a small set speaker identification task show that MCE training can reduce closed-set identification errors by up to 20-25% over a baseline system trained usin...
متن کاملReview of Minimum Classification Error Training in Dimensionality Reduction
Several modelling techniques are used in speech recognition to model the short term variations in a speech signal. These techniques generally use a high dimensional feature vector which could be correlated. Several classical techniques of discriminant analysis are used for reducing the dimensionality of the input feature without affecting the overall performance. One such approach is the minimu...
متن کاملMean and covariance adaptation based on minimum classification error linear regression for continuous density HMMs
The performance of speech recognition system will be significantly deteriorated because of the mismatches between training and testing conditions. This paper addresses the problem and proposes an algorithm to adapt the mean and covariance of HMM simultaneously within the minimum classification error linear regression (MCELR) framework. Rather than estimating the transformation parameters using ...
متن کاملMinimum classification error linear regression for acoustic model adaptation of continuous density HMMs
In this paper, a concatenated "super" string model based minimum classification error (MCE) model adaptation approach is described. We show that the error rate minimization in the proposed approach can be formulated into maximizing a special ratio of two positive functions. The proposed string model is used to derive the growth transform based error rate minimization for MCE linear regression (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Acoustical Society of Japan (E)
سال: 1992
ISSN: 0388-2861,2185-3509
DOI: 10.1250/ast.13.379